

CIVIL GEOTECHNICAL SERVICES ABN 26 474 013 724 PO Box 678 Croydon Vic 3136 Telephone: 9723 0744 Facsimile: 9723 0799

29th February 2024

Our Reference: 23850:NB1805

Winslow Constructors Pty Ltd 50 Barry Road CAMPBELLFIELD VIC 3061

Dear Sirs/Madams,

RE: LEVEL 1 EARTHWORKS INSPECTION AND TESTING SEVENTH BEND – STAGE 14 (MELTON SOUTH)

Please find attached our Report No's 23850/R001 to 23850/R006 which relate to the field density testing that was conducted within the filled allotments at the above subdivision. The level 1 inspections and associated field density testing commenced in October 2023 and was completed in November 2023.

The inspections and testing of the earthworks was undertaken in general accordance with the Level 1 requirements of AS 3798 - Guidelines on Earthworks for Commercial and Residential Developments.

The site inspection and testing was performed by experienced geotechnicians from this office. Any areas that were deemed unsatisfactory were reworked and retested under their supervision. The testing was performed to the relevant Australian Standards and the accompanying test reports carry NATA endorsement. The attached compaction results, which were located randomly throughout the fill profile, are considered to be representative of the bulk fill materials that were placed across the reported allotments by Winslow Constructors during the aforementioned period. The approximate locations of the field density tests can be seen on the attached plan (Figure 1).

We are of the view that the bulk fill materials that have been placed across the reported allotments by Winslow Constructors during the aforementioned period can be considered as having been placed in a controlled manner to a minimum density ratio of 95% (standard compactive effort).

Please contact the undersigned if you require any additional information.

Civil Geotechnical Services

Nick Brock

FIGURE 1

CIVIL GEOTE 6 - 8 Rose Aven	CHNICAL SERVICES nue, Croydon 3136					Job No Report No Date Issued	23850 23850/R001 01/11/23
Client Project	WINSLOW CONSTRUCTO SEVENTH BEND - STAGE	RS PTY LTD (C/ 14	AMPBELLFI	ELD)		Tested by Date tested	AM 24/10/23
Location	MELTON SOUTH					Checked by	JHF
Feature	EARTHWORKS	Lay	er thickness	200	mm	Time	e: 15:00
Test proce	dure AS 1289.2.1.1 & 5.8.1						
Test No		1	2	3	-	-	-
Location			DEFED				

		TO FIGURE 1	TO FIGURE 1	TO FIGURE 1			
Approximate depth below FSL							
Measurement depth	mm	175	175	175	-	-	-
Field wet density	t/m³	1.81	1.81	1.79	-	-	-
Field moisture content	%	22.3	22.1	22.9	-	-	-

Test procedure AS 1289.5.7.1

Test No		1	2	3	-	-	-	
Compactive effort		Standard						
Oversize rock retained on sieve	mm	19.0	19.0	19.0	-	-	-	
Percent of oversize material	wet	0	0	0	-	-	-	
Peak Converted Wet Density	t∕m³	1.84	1.84	1.81	-	-	-	
Adjusted Peak Converted Wet Density	t∕m³	-	-	-	-	-	-	
Optimum Moisture Content	%	21.5	22.5	23.5	-	-	-	

Moisture Variation From	1.0%	0.5%	0.5%	-	-	-	
Optimum Moisture Content	wet	dry	dry				
density and moisture ratio results relate only to the soil to the depth of test and not to the full depth of the layer							
Density Ratio (R _{HD}) %	98.5	98.5	99.0	-	-	-	

Material description

No 1 - 3 Clay Fill

NATA Accredited Laboratory No 9909 Accredited for compliance with ISO/IEC 17025 - Testing

AVRLOT HILF V1.10 MAR 13

Approved Signatory : Justin Fry

CIVIL GEOTE	CHNICAL SERVICES			Job No Report No	23850 23850/R002
6 - 8 Rose Aven	ue, Croydon 3136			Date Issued	01/11/23
Client	WINSLOW CONSTRUCTO	RS PTY LTD (CAMPBELLFIELD)		Tested by	AM
Project	SEVENTH BEND - STAGE	14		Date tested	25/10/23
Location	MELTON SOUTH			Checked by	JHF
Feature	EARTHWORKS	Layer thickness	200 mm	Time	: 10:31

Test procedure AS 1289.2.1.1 & 5.8.1

Test No		4	5	6	-	-	-
Location		REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1			
Approximate depth below FSL							
Measurement depth	mm	175	175	175	-	-	-
Field wet density	t/m³	1.84	1.85	1.85	-	-	-
Field moisture content	%	22.6	20.0	20.8	-	-	-

Test procedure AS 1289.5.7.1

Test No		4	5	6	-	-	-	
Compactive effort		Standard						
Oversize rock retained on sieve	mm	19.0	19.0	19.0	-	-	-	
Percent of oversize material	wet	0	0	0	-	-	-	
Peak Converted Wet Density	t∕m³	1.89	1.89	1.91	-	-	-	
Adjusted Peak Converted Wet Density	t∕m³	-	-	-	-	-	-	
Optimum Moisture Content	%	22.5	19.5	21.0	-	-	-	

Moisture Variation From	0.0%	0.5%	0.0%	-	-	-	
Optimum Moisture Content		wet					
density and moisture ratio results relate only to the soil to the depth of test and not to the full depth of the layer							
Density Ratio (R _{HD}) %	97.5	97.5	97.0	-	-	-	

Material description

No 4 - 6 Clay Fill

NATA Accredited Laboratory No 9909 Accredited for compliance with ISO/IEC 17025 - Testing

AVRLOT HILF V1.10 MAR 13

Approved Signatory : Justin Fry

CIVIL GEOTECI	Job No 2 CIVIL GEOTECHNICAL SERVICES Report No 2 6. 8 Rose Averue Creation 2126 Data Issued 2							
6 - 8 Rose Avenue	, Croydon 3136	Date Issued	21/11/23					
Client	WINSLOW CONSTRUCTORS PTY LTD (CAMPBELLFIELD)	Tested by	AM					
Project	SEVENTH BEND - STAGE 14	Date tested	27/10/23					
Location	MELTON SOUTH	Checked by	JHF					

Feature EARTHWORKS Layer thi

Layer thickness

200 mm

Time: 11:54

Test procedure AS 1289.2.1.1 & 5.8.1

Test No		7	8	9	10	11	12
Location							
		REFER	REFER	REFER	REFER	REFER	REFER
		то	то	то	то	то	то
		FIGURE 1					
Approximate depth below FSL							
Measurement depth	тт	175	175	175	175	175	175
Field wet density	t∕m³	2.03	1.99	1.94	1.88	1.85	1.81
Field moisture content	%	22.8	20.2	22.5	21.4	21.6	19.8
Test procedure AS 1289.5.7.1							
Test No		7	8	9	10	11	12
Compactive effort				Star	ndard		
Oversize rock retained on sieve	тт	19.0	19.0	19.0	19.0	19.0	19.0
Percent of oversize material	wet	0	0	0	0	0	0
Peak Converted Wet Density	t∕m³	2.12	2.10	2.01	1.93	1.90	1.90
Adjusted Peak Converted Wet Density	t/m³	-	-	-	-	-	-

Moisture Variation From	2.0%	0.0%	1.0%	0.0%	1.5%	1.0%	
Optimum Moisture Content	dry		dry		dry	dry	
density and moisture ratio results relate only to the soil to the depth of test and not to the full depth of the layer							
Density Ratio (R _{HD}) %	96.0	95.0	96.5	97.5	97.5	95.5	

20.0

23.5

21.0

23.0

20.5

AVRLOT HILF V1.10 MAR 13

%

25.0

Material description

No 7 - 12 Clay Fill

Optimum Moisture Content

NATA Accredited Laboratory No 9909 Accredited for compliance with ISO/IEC 17025 - Testing Juten Jo-

CIVIL GEOTECI	Job No 2 CIVIL GEOTECHNICAL SERVICES Report No 6 - 8 Rose Avenue, Crowdon 3136 Date Issued							
6 - 8 Rose Avenue	, Croydon 3136	Date Issued	21/11/23					
Client	WINSLOW CONSTRUCTORS PTY LTD (CAMPBELLFIELD)	Tested by	AM					
Project	SEVENTH BEND - STAGE 14	Date tested	31/10/23					
Location	MELTON SOUTH	Checked by	JHF					

Feature EARTHWORKS Layer thickness 200 mm

Time: 12:18

Test procedure AS 1289.2.1.1 & 5.8.1

iest no		13	14	15	16	17	18
Location							
		REFER	REFER	REFER	REFER	REFER	REFER
		то	то	то	то	то	то
		FIGURE 1	FIGURE 1	FIGURE 1	FIGURE 1	FIGURE 1	FIGURE 1
Approximate depth below FSL							
Measurement depth	тт	175	175	175	175	175	175
Field wet density	t∕m³	2.02	2.03	2.02	1.99	1.98	2.00
Field moisture content	%	20.0	22.6	21.6	20.9	22.5	20.0
Test procedure AS 1289.5.7.1		13	14	15	16	17	18
Test procedure AS 1289.5.7.1 Test No Compactive effort		13	14	15 Star	16 Indard	17	18
Test procedure AS 1289.5.7.1 Test No Compactive effort Oversize rock retained on sieve	mm	13 19.0	14 19.0	15 Star 19.0	16 idard 19.0	17 19.0	18 19.0
Test procedure AS 1289.5.7.1 Test No Compactive effort Oversize rock retained on sieve Percent of oversize material	mm wet	13 19.0 0	14 19.0 0	15 Star 19.0 0	16 ndard 19.0 0	17 19.0 0	18 19.0 0
Test procedure AS 1289.5.7.1 Test No Compactive effort Oversize rock retained on sieve Percent of oversize material Peak Converted Wet Density	mm wet t/m ³	13 19.0 0 2.00	14 19.0 0 2.06	15 Star 19.0 0 2.05	16 dard 19.0 0 2.03	17 19.0 0 2.01	18 19.0 0 2.04
Test procedure AS 1289.5.7.1 Test No Compactive effort Oversize rock retained on sieve Percent of oversize material Peak Converted Wet Density Adjusted Peak Converted Wet Density	mm wet t/m ³ t/m ³	13 19.0 0 2.00	14 19.0 0 2.06	15 Star 19.0 0 2.05	16 ndard 19.0 0 2.03 -	17 19.0 0 2.01	18 19.0 0 2.04
Test procedure AS 1289.5.7.1 Test No Compactive effort Oversize rock retained on sieve Percent of oversize material Peak Converted Wet Density Adjusted Peak Converted Wet Density Optimum Moisture Content	mm wet t/m ³ %	13 19.0 0 2.00 - 22.0	14 19.0 0 2.06 - 23.5	15 Star 19.0 0 2.05 - 22.0	16 dard 19.0 0 2.03 - 21.0	17 19.0 0 2.01 - 24.0	18 19.0 0 2.04 - 20.5
Test procedure AS 1289.5.7.1 Test No Compactive effort Oversize rock retained on sieve Percent of oversize material Peak Converted Wet Density Adjusted Peak Converted Wet Density Optimum Moisture Content	mm wet t/m ³ t/m ³ %	13 19.0 0 2.00 - 22.0	14 19.0 0 2.06 - 23.5	15 Star 19.0 0 2.05 - 22.0	16 ndard 19.0 0 2.03 - 21.0	17 19.0 0 2.01 - 24.0	18 19.0 0 2.04 - 20.5
Test procedure AS 1289.5.7.1 Test No Compactive effort Oversize rock retained on sieve Percent of oversize material Peak Converted Wet Density Adjusted Peak Converted Wet Density Optimum Moisture Content Moisture Variation From	mm wet t/m ³ t/m ³ %	13 19.0 0 2.00 - 22.0 2.0%	14 19.0 0 2.06 - 23.5 1.0%	15 Star 19.0 0 2.05 - 22.0 0.5%	16 dard 19.0 0 2.03 - 21.0 0.0%	17 19.0 0 2.01 - 24.0 1.5%	18 19.0 0 2.04 - 20.5 0.5%
Test procedure AS 1289.5.7.1 Test No Compactive effort Oversize rock retained on sieve Percent of oversize material Peak Converted Wet Density Adjusted Peak Converted Wet Density Optimum Moisture Content Moisture Variation From Optimum Moisture Content	mm wet t/m³ t/m³ %	13 19.0 0 2.00 - 22.0 2.0% dry	14 19.0 0 2.06 - 23.5 1.0% dry	15 Star 19.0 0 2.05 - 22.0 0.5% dry	16 19.0 0 2.03 - 21.0 0.0%	17 19.0 0 2.01 - 24.0 1.5% dry	18 19.0 0 2.04 - 20.5 0.5% dry
Test procedure AS 1289.5.7.1 Test No Compactive effort Oversize rock retained on sieve Percent of oversize material Peak Converted Wet Density Adjusted Peak Converted Wet Density Optimum Moisture Content Moisture Variation From Optimum Moisture Content density and moisture ratio results	mm wet t/m³ t/m³ %	13 19.0 0 2.00 - 22.0 2.0% dry ponly to the so	14 19.0 0 2.06 - 23.5 1.0% dry il to the depti	15 Star 19.0 0 2.05 - 22.0 0.5% dry h of test and	16 ndard 19.0 0 2.03 - 21.0 0.0% not to the ful	17 19.0 0 2.01 - 24.0 1.5% dry	18 19.0 0 2.04 - 20.5 0.5% dry

No 13 - 18 Clay Fill

NATA Accredited Laboratory No 9909 Accredited for compliance with ISO/IEC 17025 - Testing

Approved Signatory : Justin Fry

AVRLOT HILF V1.10 MAR 13

		Job No	23850
CIVIL GEOTEC	HNICAL SERVICES	Report No	23850/R005
6 - 8 Rose Avenue	e, Croydon 3136	Date Issued	09/11/23
Client	WINSLOW CONSTRUCTORS PTY LTD (CAMPBELLFIELD)	Tested by	AM
Project	SEVENTH BEND - STAGE 14	Date tested	01/11/23
Location	MELTON SOUTH	Checked by	JHF

Feature EARTHWORKS

Layer thickness

200 mm

Time: 11:17

Test procedure AS	1289.2.1.1 & 5.8.1	!
-------------------	--------------------	---

Test No		19	20	21	22	23	24
Location							
		REFER	REFER	REFER	REFER	REFER	REFER
		ТО	ТО	то	то	ТО	то
		FIGURE 1					
Approximate depth below FSL							
Measurement depth	mm	175	175	175	175	175	175
Field wet density	t/m³	2.03	1.99	1.95	2.20	2.14	2.22
Field moisture content	%	22.5	18.7	20.7	18.8	18.6	20.6

Test procedure AS 1289.5.7.1

Test No	19 20 21 22 23				24		
Compactive effort		Standard					
Oversize rock retained on sieve	mm	19.0	19.0	19.0	19.0	19.0	19.0
Percent of oversize material	wet	0	0	0	0	0	0
Peak Converted Wet Density	t∕m³	2.11	2.07	1.98	2.29	2.19	2.27
Adjusted Peak Converted Wet Density	t∕m³	-	-	-	-	-	-
Optimum Moisture Content	%	22.5	18.5	21.0	18.5	18.0	20.5

Moisture Variation From	0.0%	0.0%	0.0%	0.5%	0.5%	0.0%			
Optimum Moisture Content	<u> </u>	<u> </u>	<u> </u>	wet	wet	1'			
density and moisture ratio results relate only to the soil to the depth of test and not to the full depth of the layer									
Density Ratio (R _{HD}) %	96.0	96.5	98.5	96.0	97.5	98.0			

Material description

No 19 - 24 Clay Fill

NATA Accredited Laboratory No 9909 Accredited for compliance with ISO/IEC 17025 - Testing

AVRLOT HILF V1.10 MAR 13

Approved Signatory : Justin Fry

	INICAL SERVICES	Job No Report No	23850 23850/R006
6 - 8 Rose Avenue	Crovdon 3136	Date Issued	13/11/23
Client	WINSLOW CONSTRUCTORS PTY LTD (CAMPBELLFIELD)	Tested by	AM
Project	SEVENTH BEND - STAGE 14	Date tested	08/11/23
Location	MELTON SOUTH	Checked by	JHF

Feature EARTHWORKS

Layer thickness

200 mm

Time: 10:30

Test procedure AS 1289.2.1.1 & 5.8.1

Test No		25	26	27	-	-	-
Location		REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1			
Approximate depth below FSL							
Measurement depth	mm	175	175	175	-	-	-
Field wet density	t/m³	1.87	1.88	1.91	-	-	-
Field moisture content	%	22.8	21.1	21.6	-	-	-

Test procedure AS 1289.5.7.1

Test No		25	26	27	-	-	-
Compactive effort		Standard					
Oversize rock retained on sieve	mm	19.0	19.0	19.0	-	-	-
Percent of oversize material	wet	0	0	0	-	-	-
Peak Converted Wet Density	t∕m³	1.91	1.92	1.89	-	-	-
Adjusted Peak Converted Wet Density	t∕m³	-	-	-	-	-	-
Optimum Moisture Content	%	25.5	23.0	23.5	-	-	-

Moisture Variation From	2.5%	2.0%	2.0%	-	-	-			
Optimum Moisture Content	dry	dry	dry						
density and moisture ratio results relate only to the soil to the depth of test and not to the full depth of the layer									
Density Ratio (R _{HD}) %	98.0	98.0	101.0	-	-	-			

Material description

No 25 - 27 Clay Fill

NATA Accredited Laboratory No 9909 Accredited for compliance with ISO/IEC 17025 - Testing

AVRLOT HILF V1.10 MAR 13

Approved Signatory : Justin Fry